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Abstract. In this paper we present a procedure to learn a topological model of 
Situated Public Displays from data of people traveling between these displays. 
This model encompasses the distance between different displays in seconds for 
different ways and/or different travel modes. It also shows how many people 
travel between displays in each direction. Thus, the model can be used to 
predict where and when people will appear next after showing up in front of 
one display. This can be used for example to create continuous ‘shows’ 
spanning multiple displays while people pass them. To create the model, we use 
Bluetooth connection data of mobile phones people carry, and employ the EM 
algorithm to estimate mean travel times for different paths people take. 

Introduction 

Imagine yourself strolling down a main road in your city center a hot summer 
afternoon. The streets are filled with digital advertising screens that show 
advertisements for a few tens of seconds each. You heard about personalized 
advertising, where people are identified and delivered individual advertisements, but 
you don’t like that. You prefer to make use of your right to privacy and stay 
anonymous. As you look towards one display, you see an advertisement showing an 
attractive girl that states “Hot, isn’t it?”. You wonder what this is about, but continue 
walking. A few meters further, you see the same girl again that tells you “If there only 
was some cooling...” and now you realize how hot it really is and get curious. Some 
meters further, you see the same girl again telling you: “You’re really lucky! Buy ‘di 
Cultelli’s’ ice cream right here!”. You turn your head and see that you stand right in 
front of an ice cream parlor. As you enjoy your ice cream you realize that you were 
not really identified by the advertisements but did only ride a ‘green wave’ of 
continuous advertisements. It is easy to provide such continuous ‘shows’ for the user 
if he can be identified. But because of users right to privacy, at least some users will 
always stay anonymous to advertising displays. Nevertheless, if a topological model 
of the displays is available that allows to estimate the probability that a user passes 
one display a certain time after he passed another, the following advertisements could 
be presented for certain confidence intervals of arrival probability. Thus, ‘green 
waves’ of continuous advertisement shows, related by a common design, could be 
created. If these are designed accordingly, like in the example, it would not matter 
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much if the user misses one of the advertisements. In this paper, we focus on the 
problem of how such a topological model can be created. We implemented and 
evaluated our approach in our test environment presented in figure 1. Of course, such 
a topological model representing the relative locations of displays could be used for 
many more applications, for example deciding which advertisement to show 
depending on the environment in general.  

 

 
Fig. 1. The Situated Public Displays installed in our test environment at the University of 
Münster. Displays 1 and 2 are installed at the entrances of the building, while displays 3 and 4 
are installed in hallways. The displays are used as an information system for the department 
and mainly show advertisements for talks, lectures, excursions etc. We have more than 10 
sources of information from faculty and secretaries. More than 500 students use the system on a 
daily basis. The system is running for more than 15 months now, and over 340 advertisements 
have been posted. Each advertisement is shown on all displays for several weeks, thus there are 
always more advertisements available than fit on the displays. We select the advertisements 
that are shown in dependence on the location, time, and audience in front of the display. Most 
information is published as paper-based posters as well as on the displays, but the displays 
seem to be gradually replacing paper for urgent news. 

The remainder of this paper is structured like follows. After summarizing some 
related work, we show how the problem fits into a more general context of self-
configuring Situated Public Displays. Then we present how data obtained from people 
who can be identified can be used to create a topological model of the displays. This 
model contains the mean travel times between displays for different paths, the 
standard deviation and number of people that took that path. We identified people 
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using Bluetooth sensors to identify their mobile phones. We present the algorithms we 
use together with the example data for our setting. Finally, we conclude and present 
some future work. 

Related Work 

This work builds on ideas that were introduced in the NearMe proximity estimation 
system [1]. NearMe estimates the proximity of different 802.11 wireless networking 
(Wi-Fi) enabled devices. When two devices share no common access point (long-
range proximity), NearMe uses an estimation of the distance of access points the 
devices can connect to for estimating the distance of the devices. To achieve this, 
time-stamped Wi-Fi signatures are kept that store when the client was in reach of the 
different access points. The distance between two access points is then estimated as 
the minimum time difference between one signature with the first access point and 
another with the second access point. This is done for any pair of access points, 
resulting in a list of MAC address pairs and the minimum time any client was able to 
transition between them. Our approach is different from NearMe in two major ways. 
First, NearMe creates a full table of all pairs of access points together with a travel 
time estimate. Instead, we create a topological graph model that includes the 
information, which displays have to be passed to get from one display to another. 
Second, NearMe uses the minimum travel time ever observed to estimate the distance 
between access points. Our experiences have shown that because of frequent 
erroneous readings, this would lead to heavy underestimation of the distance between 
displays. We therefore use the Expectation-Maximization (EM) [2] algorithm to 
estimate the travel times between displays. Additionally, while NearMe uses Wi-Fi, 
we use Bluetooth, and while for NearMe a client software is necessary to collect the 
signatures, in our case the whole software runs on the displays. Predestination [3] is a 
system to predict the destination of car drivers from GPS data as the trip progresses. 
Similar to our system, it can be used to predict where a user will appear next. 
Location prediction is also a common problem in wireless networks, an overview can 
be found in [4]. In wireless networks, location prediction is used to make smooth 
handoffs between communication cells. Relate [5] is a system to sense the relative 
location of different devices with custom hardware. The spatial relations of a number 
of laptops on a table are sensed with ultrasonic transducers. A general overview of 
location systems for ubiquitous computing is provided by [6]. A more general 
approach to user modeling in ubiquitous computing is given by [7]. Here, Bluetooth 
sensors are used to detect users mobile phones and estimate users location and 
actions. In [8] Bluetooth sensors are employed to select advertisements not yet seen 
by the present audience in front of a public display. An overview of issues for self-
configuration of Situated Public Displays, and a further description of Situated Public 
Displays as installed in Münster is provided in [9]. A collection of various works 
regarding Situated Public Displays is available in [10]. 
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The Need for Self-Configuring Situated Public Displays 

Regarding the adaptation of Situated Public Displays to their environment, we 
distinguish between the adaptation to the immediate situation (short-term adaptation) 
and adaptation to the general context (long-term adaptation). Long-term adaptation is 
especially important when there is not enough information available for short-term 
adaptation. For example, it could be impossible to identify each individual user in 
short-term. This could be due to technical limitations, but also due to legal issues or 
simply because users do not like to be identified. But long-term adaptation can 
nevertheless generate models that allow adapting to the general population of users, 
although the individual users can’t be identified. In theory, these models could also be 
created manually, but in most cases this would not be realistic. There is enormous 
effort involved in creating such models and no central authority available to 
coordinate the creation across multiple display owners. Furthermore, the necessary 
knowledge that should be represented in the model might simply be unavailable. A 
continuously changing environment would require continuous updating of such 
models. Therefore, we follow the autonomic computing paradigm from IBM [11] and 
suggest that Situated Public Displays should be self-configuring. 

One question that needs to be solved to enable such self-configuration is to 
determine the location of the display. The location could be represented either in 
absolute or relative coordinates. Location could also include models of paths people 
usually take, to predict where people would probably appear next. Absolute location 
models could be achieved from classical location systems, like GPS, together with 
maps of the environment. Relative location models could be created by observing the 
people passing the displays, like presented in the next section. The location of nearby 
Points of Interest (POI) would be needed to provide related information to the POIs. 
Such a model could be created by observing the position of people known to visit a 
POI before and during the event. Another question is how a model of the user 
population passing the display at certain days and times can be created and used to 
adapt information presentation to this population. Such a model could be created by 
observing the spatio-temporal behavior of people for whom profiles are available, for 
example via Bluetooth sensors. A model of which kinds of information certain people 
and groups are interested in is also necessary to enable such adaptation. This model 
could be created from interaction data, for example people copying events to their 
calendar. Alternatively, the display could observe which items people look at, for 
example via face detection with a camera installed at the display. 

Learning the Topology of Situated Public Displays 

To create a topological model of the displays, we follow a similar approach to that 
used in NearMe for long-range proximity. In NearMe, to estimate the distance 
between two access points, the minimum travel time ever observed was used. This 
can be problematic in case of frequent erroneous readings, for example trough 
ceilings and walls and due to numerous other error sources. In this case that approach 
is quite vulnerable to heavily underestimate the real distance. In our case, due to 
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errors we sometimes have transit times of zero or one second between displays, so 
taking the minimum would clearly produce wrong results. Instead, we use the 
Expectation-Maximization (EM) algorithm [2]. This algorithm assumes that the 
different travel times are created by people taking different ways between the 
displays. It furthermore assumes that the travel times for each way are distributed 
according to the normal distribution. This is a strong simplification, because for 
example the normal distribution has non-zero probability for negative travel times 
while in reality negative travel times are impossible. Nevertheless, we show that this 
approach still produces quite good results. 

 

 
Fig. 2.  A map of the test environment showing the locations of the different displays. The 
paths between the displays are shown together with the time needed to travel between the 
displays, as measured with a clock. These times are then estimated with the Expectation-
Maximization algorithm. 

The EM algorithm takes as input the set of travel times and the number of normal 
distributions (Gaussians) that should be assumed to have generated the data. It then 
adjusts the means and standard deviations of the Gaussians until it reaches a local 
maximum likelihood hypothesis for the parameters of the Gaussians. This approach 
has the benefit that it is quite insensitive to noise, because there is always one 
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Gaussian with a big standard deviation to accommodate all the noise. In addition, 
multiple paths and transportation modes, like walking, bicycle, car, bus etc. can be 
identified. The main drawback is that the number of Gaussians and thus the number of 
paths must be known in advance. In our case the data is generated with Bluetooth 
sensors. A Bluetooth sensor is a device that scans for nearby Bluetooth devices and 
reports the Bluetooth addresses of the devices found. Users can subscribe to a service 
that enables interaction with the displays via their mobile phone and thus agree that 
their data is logged by the system. Currently, most members of our work group and a 
number of students use this offer. Each display is equipped with a Bluetooth USB 
stick and runs software that continuously scans for nearby Bluetooth devices. 

 
Fig. 3.  Part of the travel times from display 1 to display 3, together with the EM estimations 
for two Gaussians. The first Gaussian (µ=8s, σ=5s) represents people who are assumed to have 
taken the direct way. The second Gaussian (µ=11284s, σ=63451s) represents the indirect ways 
and noise and is so flat that it is hardly visible. Thus, the algorithm assumes the path to take 
about 8 seconds to walk. Only travel times of up to 100 seconds are shown. 

For all subscribed devices found it is checked whether they were present during the 
previous scan. If a device is found that was not present during the previous scan, a 
database entry is created that contains the Bluetooth MAC address, a timestamp, an 
“entered” flag and the name of the display. If a device that was present during the last 
scan is not found again, a database entry with a “left” flag is created. On our platform 
a scan takes 11 sec., so this is the temporal resolution with which timestamps are 
created. To calculate the individual travel times between displays, we cycle through 
all database entries with a “left” flag. From this entry, we look for the next entry with 
an “entered” flag, and store the time difference into the corresponding list for the pair 
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of displays from which the entries were created. Thus, for each ordered pair of 
displays we obtain a set of travel times. For each ordered pair of displays we then 
execute the EM algorithm to estimate the mean travel times for the different paths 
between the displays.  

 

 
Fig. 4.  The model of the displays in the test environment, as generated by the procedure 
presented. The model is a directed graph that contains as labels for each edge a) The mean time 
to walk from one display to the other b) The corresponding standard deviation and c) The 
people observed to have walked from the first to the second display. The model enables to 
predict where and when a person will probably show up next after having passed a certain 
display. 

First we set the number of different paths we want to identify, in our case one per pair 
of displays. Then we add another Gaussian to accommodate the noise that occurs for 
example when someone passes a display, goes to vacation, and then passes another 
display when he comes back. The algorithm is then initialized with random 
hypotheses about the means and standard deviations of the Gaussians. In the 
Expectation step, for each of the instances the probability that it was generated by 
each of the Gaussians is calculated. In the Maximization step, new hypotheses about 
the means and standard deviations are built. This happens under the assumption that 
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the instances belong to the Gaussians as calculated in the Expectation step. These two 
steps are repeated until the algorithm converges to a local maximum likelihood 
hypothesis. A graph showing the actual travel times from display 1 to display 3 
together with the Gaussians that were calculated by the EM algorithm is depicted in 
figure 3. The data structure created by the procedure is a directed multigraph with 
labeled edges (see figure 4). Each display is represented as a node, and each Gaussian 
for a way between the displays is represented as an edge. Edges between two displays 
are labeled with a) How many people directly traversed from the first display to the 
second without passing another display in between and b) The expected mean and 
standard deviation of the travel time. Within four months of running the system we 
collected 92.827 timestamps. However, the majority of these timestamps were not 
actual traversals between different displays, but people sitting for example at their 
workplace and being repeatedly found and lost by the scanner.  

 
From To Measured EM Error Cases PEBL K700i 6230i 6310i 

1 2 46 21 25 36 23* 23* 23 37* 
2 1 48 24 24 52 x 38 30* 63* 
1 3 37 8 29 166 x -53 -7 -7 
3 1 33 7 26 156 15 3 15 3 
1 4 48 4 44 72 - - - - 
4 1 43 15 28 82 - - - - 
2 3 41 6 35 99 - - - - 
3 2 38 6 32 101 - - - - 
2 4 31 10 21 304 -12 -11 -11 -11 
4 2 27 11 16 430 36 -21 -9 -30* 
3 4 11 12 -1 380 16 -2 -4 -4 
4 3 10 8 2 379 -7 -18 -18 -19 

Table 1. Travel times between all combinations of displays in our building. The “Measured” 
column gives the times we measured with a clock, “EM” gives the estimation of our procedure 
for the distance, and “Error” is the difference between the two. “Cases” gives the total number 
of traversals our system observed, and the last four columns give the time difference between 
leaving the first Bluetooth cell and entering the next Bluetooth cell for different mobiles we 
carried while measuring with the clock. In case of negative times, the second cell was entered 
before the first one was left, impossible trajectories are marked with “-”. In case of “x” the 
device was not found by the display, and in cases of “*” the device was found by a third display 
that was not directly passed before being found by the second (target) display. 

In total 2257 traversals between different displays were detected. Because within our 
building, between each pair of displays only one path is possible (see figure 2), we 
used for each ordered pair of displays two Gaussians. One of these was supposed to 
accommodate the data from people taking the direct way, and one to accommodate 
the noise. To create a ground truth, we measured the time needed to traverse between 
the displays by walking normally (see table 1). While we did this, we carried four 
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mobile phones with us to generate comparison data for Bluetooth cell entry and 
leaving with different models. The data we generated for the travel times are shown in 
table 1. As can be seen in the table, there is a quite constant error of about 28 seconds 
except for the way from display 3 to display 4 and back. The mean error is 23.4 
seconds. The error stems from four main sources. First of all, of course the Bluetooth 
cells are much bigger than only the immediate vicinity of the display. The Bluetooth 
signal is lost by the system only a number of seconds after the user started to walk 
away, and the second display receives a Bluetooth signal a number of seconds before 
the user actually arrives in front of the display. This sometimes even causes the cells 
to overlap, as with displays 3 and 4. Second, a scan can take place only every 11 
seconds, so we have an error of up to ±11 sec. due to temporal resolution. Third, quite 
often a mobile phone is not found by a Bluetooth scan although it is in vicinity of the 
display. This causes an additional error of 11 sec. per scan where the phone is not 
found. Fourth, Bluetooth works through ceilings and walls. So, when a user passes 
next to a display on a different level or on the other side of a wall, he is often detected 
by the display. In our case, users traversing from display 1 to display 2 on the ground 
floor are regularly detected by displays 3 and 4 on the first floor (see figure 2). In 
table 1, these cases are depicted with a “*”. To deal with the first error source, it 
would be sensible to add a constant offset of 23 seconds to the estimation of 
distances. The remaining error would then be within a few seconds, but that would 
have to be tested against a different set of displays in another setting. Because the 
error from the first three sources doesn’t grow with the distance between displays, the 
bigger the actual distance, the smaller the impact of the error. 

Conclusion & Future Work 

In this paper we presented a procedure to learn a topological model of Situated Public 
Displays from data of people traversing between these displays. The model contains 
the mean travel time between Situated Public Displays for different ways and/or 
transportation modes. In addition, it shows how many people traverse between 
Situated Public Displays in each direction. This model enables to predict where and 
when people would probably appear next after showing up in front of a display. This 
enables us to present continuous ‘shows’ that span multiple displays while people 
pass them, regardless whether people can be identified, detected, or are invisible to 
the system. We implemented the procedure and tested it using four different displays. 
We showed that the procedure works for our case and presented four main sources of 
errors. We plan to add additional sensors to augment the model with further 
information. One idea is to use display-mounted cameras with blob detection to 
estimate in which direction a user walked after passing the display. This information 
could be used to generate arrows that guide the user to a particular location. Camera 
information could also be used to estimate whether a user actually passed a display 
and when exactly he did so. We also plan to work on the generated shows that span 
multiple displays, and want to further investigate how to generate such shows for 
people invisible to the system. 
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